Certifiable Robustness to Adversarial State Uncertainty in Deep Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Certifiable Distributional Robustness with Principled Adversarial Training
Neural networks are vulnerable to adversarial examples and researchers have proposed manyheuristic attack and defense mechanisms. We take the principled view of distributionally ro-bust optimization, which guarantees performance under adversarial input perturbations. Byconsidering a Lagrangian penalty formulation of perturbation of the underlying data distribu-tion in a Wasserst...
متن کاملRobust Deep Reinforcement Learning with Adversarial Attacks
This paper proposes adversarial attacks for Reinforcement Learning (RL) and then improves the robustness of Deep Reinforcement Learning algorithms (DRL) to parameter uncertainties with the help of these attacks. We show that even a naively engineered attack successfully degrades the performance of DRL algorithm. We further improve the attack using gradient information of an engineered loss func...
متن کاملDeep Adversarial Robustness
Deep learning has recently contributed to learning state-of-the-art representations in service of various image recognition tasks. Deep learning uses cascades of many layers of nonlinear processing units for feature extraction and transformation. Recently, researchers have shown that deep learning architectures are particularly vulnerable to adversarial examples, inputs to machine learning mode...
متن کاملGeneralizing Adversarial Reinforcement Learning
Reinforcement Learning has been used for a number of years in single agent environments. This article reports on our investigation of Reinforcement Learning techniques in a multi-agent and adversarial environment with continuous observable state information. Our framework for evaluating algorithms is two-player hexagonal grid soccer. We introduce an extension to Prioritized Sweeping that allows...
متن کاملTactics of Adversarial Attack on Deep Reinforcement Learning Agents
We introduce two tactics, namely the strategicallytimed attack and the enchanting attack, to attack reinforcement learning agents trained by deep reinforcement learning algorithms using adversarial examples. In the strategically-timed attack, the adversary aims at minimizing the agent’s reward by only attacking the agent at a small subset of time steps in an episode. Limiting the attack activit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2021
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2021.3056046